

High DR ADC for LHC

Sarthak Kalani

Last updated: 01/26/17

Aim: ADC design for The LHC (Large Hadron Collider), CERN

- ADC specifications:
 - 14-bit design: To accommodate high dynamic range (16 bit)
 - 40MSps
- To design: intermediate block
 - Increase accuracy to 14 bit (or enhance the dynamic range)

Previously: 4x Branch simulation

Previous results: 4x branch@ 5MHz Input, 40MSPS

- Simulations contain:
 - Transistor level transient simulation
 - Transient noise enabled
- Tt, ff, ss, sf and fs corners simulated for 0°C and 50°C
 - Worst case (ss0) limited by both noise and distortion

Corner	SNR (dB)	SDR (dB)	SNDR (dB)	Power (mW)	Vout _{pp} (diff) (V)
tt 0	63.0	68.5	62.0	108	1.6
tt 50	62.3	74.0	62.0	111	1.6
ss 0 (worst THD)	63.3	64.8	61.1	86	1.6
ff 50	62.4	82.7	62.4	121	1.6

1x Branch simulation

1xbranch result @ 5MHz Input, 40MSPS

- Simulations contain:
 - Transistor level transient simulation
 - Transient noise enabled
- Only ss 0°C simulated (worst case for SDR)
- Obtained SNDR of 61dB (similar to 4x branch)

Important: Transistor sizes!

Transistor level differential amplifier


```
M1,M2 = 1920u/240n M4,M5 \frac{3840u}{240n} M12,M13 = 1920u/240n R1,R2 = 200kΩ M3 = 1280u/240n M6, M7 = 5760u/240n M14,M15 = 640u/240n R3,R4 = 0(zero)Ω C1,C2 = 1pF M10, M11 = 640u/240n Cload = 4pF C3,C4 = 14pF _7
```

Discussion: Large transistor sizes

- Necessary because RVT devices used currently:
 - Differential input pair: 600mV common mode.
 - $V_{th} = 550 \text{mV}$ for worst corner.
 - Need to go in weak inversion, using large sizes
 - Large current additionally necessitates huge transistor sizes
- Current plan:
 - Complete 1st version at system level with current design (large transistors)
- Plan for 2nd version of the design:
 - Use of LVT devices, V_{th} is 426mV for worst corner.
 - Smaller transistor size is expected, though devices will still be relatively large

Combined branch simulation

Output for 1x branch corrupted!

1x branch selected for combined 1x and 4x branch schematic. Fin = 127/1024*Fs, Input Amplitude = 0.4V

Reason: Strong non-linearity from 4x branch

Proposed improvement

1x Introduce switch for 4x branch Out I DAC₁ ADC DAC₄ 12-bit ADC Mux Sub-Gain Select ADC Switching Selection Scheme Sel 1x DRE block SeLLX Eri4x cont Simplified Schematic of DRE Sel4X (during H)

Simulation results (ss 0°C, transistor level, 5MHz input)

Current status on SNDR curve

DRE input requirements: Updated

Previously:

Requirement	Value
Input Resistance to be driven	250Ω single ended (1x and 4x branch having 500Ω each)
Input Capacitance to be driven	17pF Single ended (8pF each for 1x and 4x branch and 1pF for Sampling ADC)
Vpp differential input	1.6V

Additionally:

Can we have two decoupled outputs from previous interface chip?

This will greatly simplify 1x and 4x coupling challenges

Future plans

- Implement automatic gain selection mechanism.
- Start with LVT version of amplifier.

- Chip tapeout plans:
 - Chip 1: Only DRE block
 - Area estimate: 1mm x 1mm
 - Chip 2: DRE + 12 bit ADC (combined with UT-A)
 - Inner area estimate (without pads): 0.5mm x 0.8mm

Backup slides

Alternate switch position for 4x branch

Benefit: Unlike previous version, common mode settling is not required Verification still in progress.

Switching selection scheme

Switching selection scheme (contd.)

Timing → S => 1 x & 4 x Sample Hadr => Decide 1x or 4x H => Either Sel IX or Sel 4x becomes 1 Selection process: - > H=> Brecharge (P) En4x latched node. (output of domino latch) -> S => Latch active, vanytime En4x cont. is O(zero), domino trips, output o -oHadr > Transfer Latch value to make ether sel 1x active on Sel 4x active - H => cycle repeats - During S, sel 1x & sel 4x are O (zero)

Switching selection scheme (contd.)

System level SNDR requirements

- 1-bit provided by sample stage MDAC
- 11-bit ADC is expected to provide 67.7dB SNDR
- Overall 12-bit ADC requirement of 73dB obtained by combination of 1-bit output and 11-bit ADC

 - Ideally need 67dB SNDR at the MDAC output.
 - Currently worst case SNDR is 61dB.

System level requirements satisfied!

- 1-bit provided by sample stage MDAC
- 61.1 dB SNDR obtained in the worst case simulation
- After combining, SNDR obtained is 67.1dB

 Overall system level requirements are still satisfied

Power consumption for 4x branch

- For ss 0°C case:
 - Total power = 86mW
 - 4x Amplifier power = 58mW (67%)
 - Sampling Amplifier power = mW (33%)
- Power required in 4x Amplifier to increase SNR

Sampled output waveform

